metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[3-(4-carboxyphenoxy)propionato- κ O]bis[3-(4-carboxyphenoxy)propionic acid- κ O]bis(pyridine- κ N)cobalt(II)

Li-Li Kong, Shan Gao* and Li-Hua Huo

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China Correspondence e-mail: shangao67@yahoo.com

Received 4 September 2007; accepted 14 September 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.006 Å; R factor = 0.056; wR factor = 0.215; data-to-parameter ratio = 15.7.

The title complex, $[Co(C_{10}H_9O_5)_2(C_{10}H_{10}O_5)_2(C_5H_5N)_2]$, is a neutral mononuclear complex. The Co^{II} atom, which lies on a centre of symmetry, has a distorted octahedral geometry involving two O atoms of the 3-(4-carboxyphenoxy)propionate groups, two O atoms of the 3-(4-carboxyphenoxy)propionic acid groups and two N atoms of two pyridine ligands. A two-dimensional supramolecular structure is constructed via $\pi - \pi$ interactions [centroid-to-centroid distance 3.589 (3) Å] and hydrogen-bonding interactions.

Related literature

3-(4-Carboxyphenoxy) propionic acid $[3-(p-CPOPH_2)]$ has been reported previously (Gao & Ng, 2006). In our previous work, the cobalt(II) complex of $3-(p-CPOPH_2)$ has been characterized by X-ray crystallography (Xiao et al., 2006).

Experimental

Crystal data

$[Co(C_{10}H_9O_5)_2(C_{10}H_{10}O_5)_2-$	$\beta = 76.53 \ (3)^{\circ}$
$(C_5H_5N)_2]$	$\gamma = 78.94 \ (3)^{\circ}$
$M_r = 1055.83$	V = 1182.2 (5) Å ³
Triclinic, P1	Z = 1
a = 8.2621 (17) Å	Mo $K\alpha$ radiation
b = 8.7358 (17) Å	$\mu = 0.45 \text{ mm}^{-1}$
c = 17.502 (4) Å	T = 295 (2) K
$\alpha = 76.58 \ (3)^{\circ}$	$0.38 \times 0.25 \times 0.19 \text{ mm}$

Data collection

```
Rigaku R-AXIS RAPID
  diffractometer
Absorption correction: multi-scan
  (ABSCOR; Higashi, 1995)
  T_{\min} = 0.848, \ \tilde{T}_{\max} = 0.920
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of
$wR(F^2) = 0.215$	independent and constrained
S = 1.07	refinement
5356 reflections	$\Delta \rho_{\rm max} = 0.52 \ {\rm e} \ {\rm \AA}^{-3}$
341 parameters	$\Delta \rho_{\rm min} = -0.98 \text{ e } \text{\AA}^{-3}$
3 restraints	

11688 measured reflections

 $R_{\rm int} = 0.038$

5356 independent reflections

2748 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

		G 4 114	a (aa (a)
Co1-O2	2.062 (3)	Co1-N1	2.133 (3)
Co1-O6	2.125 (3)		
O2-Co1-O6	82.86 (12)	O6-Co1-N1	88.11 (11)
O2-Co1-N1	91.23 (11)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} \text{O7-H30} \cdots \text{O1}^{\text{i}} \\ \text{O4-H20} \cdots \text{O10}^{\text{ii}} \\ \text{O9-H10} \cdots \text{O5}^{\text{ii}} \end{array}$	0.86 (3) 0.86 (5) 0.85 (5)	1.58 (4) 1.79 (5) 1.79 (5)	2.436 (4) 2.637 (4) 2.633 (4)	178 (7) 173 (6) 172 (6)
		(**) 1		

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x - 1, -y, -z + 1.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Heilongjiang Province Natural Science Foundation (grant No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (grant No. 1054 G036) and Heilongjiang University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2101).

References

- Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, 03420-03421.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany,
- Xiao, Y.-H., Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, m2274-m2276.

Acta Cryst. (2007). E63, m2554 [doi:10.1107/S1600536807045229]

Bis[3-(4-carboxyphenoxy)propionato- κO]bis[3-(4-carboxyphenoxy)propionic acid- κO]bis(pyridine- κN)cobalt(II) acid-

L.-L. Kong, S. Gao and L.-H. Huo

Comment

Our studies have addressed the metal derivatives of carboxyphenoxypropionic acids. 3-(4-carboxylatophenoxy) propionic acid [$3-(p-\text{CPOPH}_2)$] is a potential flexible multidentated ligand which could be used as a terminal ligand or a bridging ligand with different coordination modes when coordinated to various metal ions. In addition to its versatile coordination modes, 3-(4-carboxylatophenoxy) propionic acid may take part in hydrogen-bonding interactions by functioning as either a hydrogen-bond donor or acceptor (Gao & Ng, 2006). Recently, we have reported the structure of a dinuclear cobalt(II) complex incorporating 3-(4-carboxylatophenoxy) propionate groups, namely [$Co_2(C_{10}H_8O_5)_2(H_2O)_8$]·4H₂O, (I) (Xiao *et al.*, 2006).

In contrast to (I), the title compound is a mononuclear complex (Fig. 1), in which the Co atom lies on a centre of symmetry and displays a distorted octahedral geometry involving two O atoms of the 3-(4-carboxylatophenoxy)propionate groups, two O atoms of the 3-(4-carboxyphenoxy)propionic acid groups and two N atoms of two pyridine ligands. The average Co—O(carbonyl) bond length is 2.094 (2) Å, which is somewhat longer than the corresponding value in (I), 2.038 (3) Å. Furthermore, a two-dimensional supramolecular layer is constructed *via* π - π stacking interactions between the pyridine rings [centroid-centroid distance: 3.589 (3) Å] and hydrogen-bonding interactions (Table 2). There is, in additiom, a strong intramolecular H-bond (first entry in Table 2 and Fig. 1), linking the two independent, coordinated carboxylate groups.

Experimental

The title complex was prepared by the addition of cobalt(II) acetate trihydrate (10 mmol), pyridine (1 ml) and 3-(*p*-CPOPH₂) (15 mmol) to a H₂O/MeOH ($\nu/\nu = 1:1$) solution. Red crystals were obtained from the filtered solution at room temperature over several days. CH&N analysis. Calc. for C₅₀H₄₈N₂O₂₀Co: C 56.88, H 4.58, N 2.65%. Found: C 56.89, H 4.56, N 2.66%.

Refinement

The H atoms were placed in calculated positions with C—H = 0.93 or 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ and were included in the refinement in the riding model approximation. The H atoms of hydroxyl groups were located in difference Fourier maps and refined with the O—H distance restrained to 0.85 (1) Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. Molecular structure of the title compound with 30% probability ellipsoid for the non-H atoms. Dashed lines indicate O—H···O hydrogen bonds. [Symmetry code: (i) -x + 1, -y + 1, -z]

$Bis[3-(4-carboxyphenoxy) propionato-\kappa O] bis[3-(4-carboxyphenoxy) propionic \ acid-\kappa O] bis(pyridine-\kappa N) cobalt(II)$

Crystal data

Z = 1
$F_{000} = 549$
$D_{\rm x} = 1.483 {\rm ~Mg~m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 7199 reflections
$\theta = 3.1 - 27.4^{\circ}$
$\mu = 0.45 \text{ mm}^{-1}$
T = 295 (2) K
Block, red
$0.38 \times 0.25 \times 0.19 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID	5356 independent reflections
diffractometer	ssee independent reflections
Radiation source: fine-focus sealed tube	2748 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
Detector resolution: 10 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 295(2) K	$\theta_{\min} = 3.1^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan	$k = -11 \rightarrow 11$
(ABSCOR; Higashi, 1995)	<i>n</i> 11 / 11
$T_{\min} = 0.848, \ T_{\max} = 0.920$	<i>l</i> = −22→22
11688 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.215$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.116P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
5356 reflections	$\Delta \rho_{max} = 0.52 \text{ e } \text{\AA}^{-3}$
341 parameters	$\Delta \rho_{min} = -0.98 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: SHELXL (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct Extinction coefficient: 0.010 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Co1	0.5000	0.5000	0.0000	0.0479 (3)
01	0.5675 (4)	0.1351 (3)	0.13958 (16)	0.0678 (8)
O2	0.5516 (4)	0.3988 (3)	0.11210 (15)	0.0602 (7)
O3	0.2880 (3)	0.1751 (3)	0.29858 (16)	0.0637 (7)
O4	-0.1451 (4)	-0.3393 (4)	0.52659 (19)	0.0735 (9)
H20	-0.224 (5)	-0.394 (6)	0.551 (3)	0.110*
O5	-0.3392 (4)	-0.1726 (4)	0.46859 (19)	0.0738 (8)
O6	0.3566 (4)	0.6826 (3)	0.05983 (17)	0.0659 (8)
O7	0.3480 (5)	0.9294 (4)	-0.00646 (19)	0.0822 (10)
H30	0.380 (8)	0.906 (7)	-0.0533 (16)	0.123*
08	0.0279 (3)	0.8049 (3)	0.19057 (16)	0.0630(7)
O9	-0.4260 (4)	0.3466 (4)	0.45047 (19)	0.0741 (9)
H10	-0.509 (5)	0.297 (6)	0.474 (3)	0.111*
O10	-0.6187 (4)	0.5077 (3)	0.38703 (18)	0.0680 (8)
N1	0.2787 (4)	0.3899 (3)	0.02698 (19)	0.0514 (7)
C1	0.3358 (5)	0.8248 (5)	0.0582 (2)	0.0536 (9)
C2	0.2917 (5)	0.8889 (5)	0.1345 (2)	0.0619 (11)
H1	0.3946	0.9019	0.1484	0.074*
H2	0.2248	0.9931	0.1252	0.074*
C3	0.1959 (5)	0.7840 (5)	0.2039 (2)	0.0606 (10)
H3	0.2468	0.6736	0.2066	0.073*
H4	0.1957	0.8142	0.2539	0.073*
C4	-0.0854 (5)	0.7190 (5)	0.2447 (2)	0.0553 (9)
C5	-0.0460 (5)	0.5970 (5)	0.3068 (2)	0.0616 (10)
H5	0.0641	0.5694	0.3147	0.074*
C6	-0.1713 (5)	0.5166 (5)	0.3568 (2)	0.0611 (10)
H6	-0.1447	0.4352	0.3987	0.073*
C7	-0.3353 (5)	0.5547 (4)	0.3459 (2)	0.0546 (9)
C8	-0.3740 (5)	0.6792 (5)	0.2833 (2)	0.0612 (10)
H8	-0.4843	0.7080	0.2756	0.073*
C9	-0.2496 (5)	0.7586 (5)	0.2333 (2)	0.0613 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Н9	-0.2757	0.8399	0.1913	0.074*
C10	-0.4689 (5)	0.4657 (5)	0.3978 (2)	0.0576 (10)
C11	0.5552 (4)	0.2669 (5)	0.1590 (2)	0.0516 (9)
C12	0.5483 (6)	0.2669 (5)	0.2461 (2)	0.0660 (11)
H11	0.6623	0.2550	0.2546	0.079*
H12	0.4909	0.3692	0.2576	0.079*
C13	0.4605 (5)	0.1377 (5)	0.3044 (2)	0.0625 (11)
H13	0.5077	0.0348	0.2906	0.075*
H14	0.4729	0.1349	0.3585	0.075*
C14	0.1814 (5)	0.0733 (4)	0.3434 (2)	0.0531 (9)
C15	0.2274 (5)	-0.0672 (5)	0.3948 (2)	0.0572 (10)
H15	0.3389	-0.0980	0.4003	0.069*
C16	0.1063 (5)	-0.1611 (5)	0.4377 (2)	0.0568 (10)
H16	0.1377	-0.2556	0.4717	0.068*
C17	-0.0601 (5)	-0.1172 (4)	0.4310 (2)	0.0536 (9)
C18	-0.1041 (5)	0.0249 (5)	0.3791 (3)	0.0658 (11)
H18	-0.2156	0.0566	0.3736	0.079*
C19	0.0148 (5)	0.1173 (5)	0.3365 (3)	0.0658 (11)
H19	-0.0166	0.2115	0.3022	0.079*
C20	-0.1901 (5)	-0.2154 (5)	0.4776 (2)	0.0549 (9)
C21	0.2354 (5)	0.3318 (5)	-0.0281 (3)	0.0614 (10)
H21	0.3072	0.3351	-0.0778	0.074*
C22	0.0891 (6)	0.2669 (5)	-0.0151 (3)	0.0723 (12)
H22	0.0641	0.2259	-0.0548	0.087*
C23	-0.0170 (6)	0.2644 (6)	0.0567 (3)	0.0810 (14)
H23	-0.1169	0.2223	0.0671	0.097*
C24	0.0248 (6)	0.3247 (7)	0.1140 (3)	0.0831 (14)
H24	-0.0473	0.3250	0.1635	0.100*
C25	0.1731 (5)	0.3845 (5)	0.0981 (2)	0.0662 (11)
H25	0.2014	0.4227	0.1379	0.079*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0527 (5)	0.0506 (4)	0.0412 (4)	-0.0108 (3)	-0.0115 (3)	-0.0058 (3)
O1	0.095 (2)	0.0616 (16)	0.0466 (16)	-0.0208 (15)	-0.0101 (15)	-0.0057 (13)
O2	0.0734 (19)	0.0650 (16)	0.0448 (15)	-0.0213 (14)	-0.0214 (13)	0.0030 (12)
O3	0.0584 (17)	0.0690 (17)	0.0536 (17)	-0.0136 (13)	-0.0069 (13)	0.0071 (13)
O4	0.074 (2)	0.079 (2)	0.0613 (19)	-0.0216 (16)	-0.0135 (16)	0.0065 (16)
O5	0.063 (2)	0.083 (2)	0.072 (2)	-0.0164 (15)	-0.0152 (16)	-0.0020 (16)
O6	0.077 (2)	0.0581 (16)	0.0602 (18)	-0.0128 (14)	-0.0041 (15)	-0.0130 (13)
O7	0.122 (3)	0.0633 (18)	0.0555 (19)	-0.0167 (18)	-0.0097 (19)	-0.0052 (15)
O8	0.0549 (17)	0.0801 (18)	0.0533 (17)	-0.0182 (14)	-0.0148 (13)	-0.0007 (13)
O9	0.070 (2)	0.081 (2)	0.066 (2)	-0.0215 (16)	-0.0178 (16)	0.0090 (16)
O10	0.0594 (19)	0.0753 (18)	0.0654 (19)	-0.0128 (14)	-0.0149 (15)	-0.0013 (14)
N1	0.0548 (19)	0.0526 (17)	0.0468 (18)	-0.0099 (14)	-0.0149 (14)	-0.0030 (13)
C1	0.047 (2)	0.058 (2)	0.057 (2)	-0.0130 (17)	-0.0123 (17)	-0.0068 (18)
C2	0.069 (3)	0.064 (2)	0.060 (3)	-0.022 (2)	-0.011 (2)	-0.018 (2)

C3	0.061 (3)	0.076 (3)	0.051 (2)	-0.014 (2)	-0.0150 (19)	-0.018 (2)
C4	0.057 (2)	0.066 (2)	0.047 (2)	-0.0130 (19)	-0.0110 (18)	-0.0137 (18)
C5	0.054 (2)	0.077 (3)	0.055 (2)	-0.008 (2)	-0.0215 (19)	-0.004 (2)
C6	0.067 (3)	0.069 (2)	0.050 (2)	-0.014 (2)	-0.021 (2)	-0.0037 (19)
C7	0.062 (3)	0.058 (2)	0.048 (2)	-0.0097 (18)	-0.0177 (18)	-0.0104 (17)
C8	0.057 (2)	0.069 (2)	0.059 (3)	-0.0116 (19)	-0.020 (2)	-0.006 (2)
C9	0.060 (3)	0.069 (2)	0.052 (2)	-0.012 (2)	-0.0165 (19)	0.0013 (19)
C10	0.062 (3)	0.069 (2)	0.047 (2)	-0.014 (2)	-0.0146 (19)	-0.0124 (19)
C11	0.044 (2)	0.069 (2)	0.043 (2)	-0.0153 (17)	-0.0109 (16)	-0.0061 (18)
C12	0.075 (3)	0.086 (3)	0.042 (2)	-0.029 (2)	-0.017 (2)	-0.0023 (19)
C13	0.064 (3)	0.084 (3)	0.038 (2)	-0.017 (2)	-0.0119 (18)	-0.0014 (18)
C14	0.057 (2)	0.061 (2)	0.040 (2)	-0.0092 (18)	-0.0070 (17)	-0.0078 (16)
C15	0.055 (2)	0.070 (2)	0.042 (2)	-0.0090 (19)	-0.0146 (17)	0.0022 (17)
C16	0.064 (3)	0.061 (2)	0.042 (2)	-0.0092 (19)	-0.0149 (18)	0.0023 (17)
C17	0.060 (2)	0.062 (2)	0.038 (2)	-0.0124 (18)	-0.0089 (17)	-0.0068 (16)
C18	0.054 (2)	0.079 (3)	0.061 (3)	-0.006 (2)	-0.018 (2)	-0.001 (2)
C19	0.062 (3)	0.067 (2)	0.059 (3)	-0.005 (2)	-0.014 (2)	0.0053 (19)
C20	0.052 (2)	0.066 (2)	0.047 (2)	-0.0067 (19)	-0.0114 (18)	-0.0107 (18)
C21	0.061 (3)	0.068 (2)	0.060 (3)	-0.017 (2)	-0.013 (2)	-0.013 (2)
C22	0.062 (3)	0.088 (3)	0.075 (3)	-0.019 (2)	-0.021 (2)	-0.020 (2)
C23	0.058 (3)	0.104 (4)	0.087 (4)	-0.032 (3)	-0.023 (3)	-0.003 (3)
C24	0.053 (3)	0.123 (4)	0.068 (3)	-0.026 (3)	-0.004 (2)	-0.005 (3)
C25	0.060 (3)	0.092 (3)	0.046 (2)	-0.017 (2)	-0.010(2)	-0.009(2)

Geometric parameters (Å, °)

Co1—O2	2.062 (3)	С6—С7	1.379 (5)
Co1—O6	2.125 (3)	С6—Н6	0.9300
Co1—N1	2.133 (3)	С7—С8	1.401 (5)
Co1—O2 ⁱ	2.062 (3)	C7—C10	1.477 (5)
Co1—O6 ⁱ	2.125 (3)	C8—C9	1.369 (5)
Co1—N1 ⁱ	2.133 (3)	C8—H8	0.9300
O1—C11	1.254 (5)	С9—Н9	0.9300
O2—C11	1.250 (4)	C11—C12	1.512 (5)
O3—C14	1.355 (4)	C12—C13	1.508 (5)
O3—C13	1.422 (5)	C12—H11	0.9700
O4—C20	1.268 (5)	С12—Н12	0.9700
O4—H20	0.86 (5)	С13—Н13	0.9700
O5—C20	1.253 (5)	С13—Н14	0.9700
O6—C1	1.215 (4)	C14—C19	1.382 (6)
O7—C1	1.276 (5)	C14—C15	1.388 (5)
O7—H30	0.86 (3)	C15—C16	1.384 (5)
O8—C4	1.365 (4)	С15—Н15	0.9300
O8—C3	1.432 (5)	C16—C17	1.379 (5)
O9—C10	1.274 (5)	С16—Н16	0.9300
O9—H10	0.85 (5)	C17—C18	1.398 (5)
O10-C10	1.266 (5)	C17—C20	1.475 (5)
N1—C21	1.331 (5)	C18—C19	1.363 (6)

N1—C25	1.340 (5)	C18—H18	0.9300
C1—C2	1.507 (6)	С19—Н19	0.9300
C2—C3	1.502 (5)	C21—C22	1.382 (6)
C2—H1	0.9700	C21—H21	0.9300
С2—Н2	0.9700	C22—C23	1.352 (7)
С3—Н3	0.9700	С22—Н22	0.9300
С3—Н4	0.9700	C23—C24	1.371 (7)
C4—C9	1.383 (6)	С23—Н23	0.9300
C4—C5	1.384 (5)	C24—C25	1.367 (6)
C5—C6	1.379 (5)	C24—H24	0.9300
С5—Н5	0.9300	С25—Н25	0.9300
O2—Co1—O2 ⁱ	180.00 (16)	С8—С9—Н9	119.7
O2—Co1—O6	82.86 (12)	С4—С9—Н9	119.7
O2—Co1—O6 ⁱ	97.14 (12)	O10—C10—O9	123.0 (4)
06—Co1—O6 ⁱ	180.00 (14)	O10—C10—C7	119.3 (4)
O2—Co1—N1 ⁱ	88.77 (11)	O9—C10—C7	117.7 (4)
O6—Co1—N1 ⁱ	91.89 (11)	O2—C11—O1	125.5 (4)
O2—Co1—N1	91.23 (11)	O2—C11—C12	116.9 (4)
O6—Co1—N1	88.11 (11)	O1—C11—C12	117.6 (3)
N1 ⁱ —Co1—N1	180.00 (17)	C13—C12—C11	114.3 (3)
O2 ⁱ —Co1—O6 ⁱ	82.86 (12)	C13—C12—H11	108.7
O2 ⁱ —Co1—N1 ⁱ	91.23 (11)	C11—C12—H11	108.7
O6 ⁱ —Co1—N1 ⁱ	88.11 (11)	C13—C12—H12	108.7
O6 ⁱ —Co1—N1	91.89 (11)	C11—C12—H12	108.7
O2 ⁱ —Co1—N1	88.77 (11)	H11—C12—H12	107.6
O2 ⁱ —Co1—O6	97.14 (12)	O3—C13—C12	106.5 (3)
C11—O2—Co1	139.0 (2)	O3—C13—H13	110.4
C14—O3—C13	118.3 (3)	C12—C13—H13	110.4
C20—O4—H20	114 (4)	O3—C13—H14	110.4
C1—O6—Co1	143.5 (3)	C12—C13—H14	110.4
С1—О7—Н30	123 (4)	H13—C13—H14	108.6
C4—O8—C3	118.5 (3)	O3—C14—C19	115.7 (3)
C10—O9—H10	111 (4)	O3—C14—C15	125.1 (4)
C21—N1—C25	117.3 (3)	C19—C14—C15	119.2 (3)
C21—N1—Co1	121.0 (3)	C16—C15—C14	119.6 (4)
C25—N1—Co1	121.6 (3)	C16—C15—H15	120.2
O6—C1—O7	123.6 (4)	C14—C15—H15	120.2
O6—C1—C2	121.0 (4)	C17—C16—C15	121.3 (3)
O7—C1—C2	115.4 (4)	С17—С16—Н16	119.4
C3—C2—C1	113.5 (3)	C15—C16—H16	119.4
C3—C2—H1	108.9	C16—C17—C18	118.3 (3)
C1—C2—H1	108.9	C16—C17—C20	121.5 (3)
С3—С2—Н2	108.9	C18—C17—C20	120.2 (4)
C1—C2—H2	108.9	C19—C18—C17	120.6 (4)
H1—C2—H2	107.7	C19—C18—H18	119.7
O8—C3—C2	106.6 (3)	C17-C18-H18	119.7

O8—C3—H3	110.4	C18—C19—C14	121.0 (4)
С2—С3—Н3	110.4	C18—C19—H19	119.5
O8—C3—H4	110.4	C14—C19—H19	119.5
С2—С3—Н4	110.4	O5—C20—O4	122.9 (4)
H3—C3—H4	108.6	O5-C20-C17	119.3 (4)
O8—C4—C9	115.4 (3)	O4—C20—C17	117.8 (4)
O8—C4—C5	124.9 (4)	N1—C21—C22	123.3 (4)
C9—C4—C5	119.7 (4)	N1—C21—H21	118.4
C6—C5—C4	119.5 (4)	C22—C21—H21	118.4
С6—С5—Н5	120.2	C23—C22—C21	118.5 (4)
C4—C5—H5	120.2	C23—C22—H22	120.7
C7—C6—C5	121.3 (4)	C21—C22—H22	120.7
С7—С6—Н6	119.4	C22—C23—C24	119.0 (4)
С5—С6—Н6	119.4	С22—С23—Н23	120.5
C6—C7—C8	118.7 (4)	C24—C23—H23	120.5
C6—C7—C10	121.4 (4)	C25—C24—C23	119.8 (4)
C8—C7—C10	119.8 (4)	C25—C24—H24	120.1
C9—C8—C7	120.1 (4)	C23—C24—H24	120.1
С9—С8—Н8	120.0	N1—C25—C24	122.1 (4)
С7—С8—Н8	120.0	N1—C25—H25	119.0
C8—C9—C4	120.7 (4)	С24—С25—Н25	119.0
O6—Co1—O2—C11	133.4 (4)	C6—C7—C10—O10	178.0 (4)
O6 ⁱ —Co1—O2—C11	-46.6 (4)	C8—C7—C10—O10	-2.9 (6)
N1 ⁱ —Co1—O2—C11	-134.6 (4)	C6—C7—C10—O9	-3.8 (6)
N1—Co1—O2—C11	45.4 (4)	C8—C7—C10—O9	175.3 (4)
O2—Co1—O6—C1	125.5 (5)	Co1—O2—C11—O1	20.6 (6)
O2 ⁱ —Co1—O6—C1	-54.5 (5)	Co1-O2-C11-C12	-160.9 (3)
N1 ⁱ —Co1—O6—C1	37.0 (5)	O2—C11—C12—C13	148.0 (4)
N1—Co1—O6—C1	-143.0 (5)	O1-C11-C12-C13	-33.4 (6)
O2—Co1—N1—C21	-141.4 (3)	C14—O3—C13—C12	177.7 (3)
O2 ⁱ —Co1—N1—C21	38.6 (3)	C11—C12—C13—O3	-67.6 (5)
O6—Co1—N1—C21	135.8 (3)	C13—O3—C14—C19	178.8 (4)
O6 ⁱ —Co1—N1—C21	-44.2 (3)	C13—O3—C14—C15	-0.5 (6)
O2—Co1—N1—C25	42.5 (3)	O3—C14—C15—C16	179.7 (4)
O2 ⁱ —Co1—N1—C25	-137.5 (3)	C19—C14—C15—C16	0.5 (6)
O6—Co1—N1—C25	-40.3 (3)	C14—C15—C16—C17	-0.6 (6)
O6 ⁱ —Co1—N1—C25	139.7 (3)	C15—C16—C17—C18	0.4 (6)
Co1—O6—C1—O7	35.9 (7)	C15—C16—C17—C20	-178.9 (4)
Co1—O6—C1—C2	-144.6 (4)	C16—C17—C18—C19	-0.1 (6)
O6—C1—C2—C3	-28.8 (6)	C20-C17-C18-C19	179.3 (4)
O7—C1—C2—C3	150.8 (4)	C17—C18—C19—C14	0.0 (7)
C4—O8—C3—C2	178.5 (3)	O3—C14—C19—C18	-179.5 (4)
C1—C2—C3—O8	-74.8 (4)	C15—C14—C19—C18	-0.2 (6)
C3—O8—C4—C9	172.7 (3)	C16—C17—C20—O5	-178.7 (4)
C3—O8—C4—C5	-8.8 (6)	C18—C17—C20—O5	2.0 (6)
O8—C4—C5—C6	-178.7 (4)	C16—C17—C20—O4	2.6 (6)
C9—C4—C5—C6	-0.2 (6)	C18—C17—C20—O4	-176.8 (4)

C4—C5—C6—C7	0.5 (6)	C25—N1—C21—C22	-0.3 (6)
C5—C6—C7—C8	-1.0 (6)	Co1—N1—C21—C22	-176.5 (3)
C5—C6—C7—C10	178.1 (4)	N1—C21—C22—C23	1.1 (7)
C6—C7—C8—C9	1.3 (6)	C21—C22—C23—C24	-0.5 (8)
C10—C7—C8—C9	-177.8 (4)	C22—C23—C24—C25	-0.8 (8)
C7—C8—C9—C4	-1.1 (6)	C21—N1—C25—C24	-1.1 (6)
O8—C4—C9—C8	179.2 (4)	Co1—N1—C25—C24	175.1 (4)
C5—C4—C9—C8	0.6 (6)	C23—C24—C25—N1	1.6 (8)
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$		
O7—H30…O1 ⁱ	0.86 (3)	1.58 (4)	2.436 (4)	178 (7)		
O4—H20…O10 ⁱⁱ	0.86 (5)	1.79 (5)	2.637 (4)	173 (6)		
O9—H10…O5 ⁱⁱ	0.85 (5)	1.79 (5)	2.633 (4)	172 (6)		
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$; (ii) $-x-1$, $-y$, $-z+1$.						

Fig. 1